COURSE DESCRIPTION CARD - SYLLABUS

Course name

Mathematical Decision Making

Course

Field of study
Safety Engineering
Area of study (specialization)
Ergonomics and work safety
Level of study
Second-cycle studies
Form of study
part-time

Year/Semester

1/1

Profile of study
general academic
Course offered in
Polish
Requirements compulsory

Number of hours

Lecture
10
Tutorials
16

Laboratory classes

0
Projects/seminars
0

Other (e.g. online)
0

Number of credit points
4
Lecturers
Responsible for the course/lecturer:
Responsible for the course/lecturer:
dr Piotr Rejmenciak
e-mail: piotr.rejmenciak@put.poznan.pl
Poznan University of Technology
ul. Piotrowo 3, 60-965 Poznań

Prerequisites

Students can determine the extremes of functions of one variable, compute the partial derivatives, operate on matrices.

Course objective

To familiarize students with the scope and purpose of building mathematical models, creating and using simple mathematical decision models.

Course-related learning outcomes

Knowledge

- knows the issues related to Mathematical Decision Making: linear programming, nonlinear programming, networks, transport issues, fuzzy sets, game theory.

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- knows the issues of the possibility of using Mathematical Decision Making in the field of occupational safety and ergonomics,

Skills

- can choose the proper method in order to make the right decision,
- student can plan and conduct experiments, interpret obtained results and draw conclusions,
- can make decisions based on mathematical methods,
- can formulate and justify the opinion on the selected decision,

Social competences

- is aware of the need to recognize the cause-and-effect relationships that are relevant during the implementation of the set goals and rank the importance of alternative or competitive tasks.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

- lectures: written final test on the last lecture, the student receives credit after obtaining at least 51\% of points possible to obtain,
- tutorials: 2 tests, the student receives credit after obtaining at least 51% of points possible to obtain.

Programme content
Mathematic programming; network algorithms: determination of the shortest path in the graph, determination of the maximum flow in the transport, networks, transport problems, games, making decisions with many goals and in conditions of uncertainty, fuzzy set theory.

Teaching methods

- lectures: multimedia presentation supplemented by examples given on the board.
- tutorials: solving sample tasks on the board.

Bibliography

Basic

1. Jędrzejczyk Z., Kukuła K., Skrzypek J., Walkosz A. (2014), Badania operacyjne w przykładach i zadaniach, Wydawnictwo Naukowe PWN, Warszawa.
2. Lindgren B.W. (1977), Elementy teorii decyzji, WNT, Warszawa.
3. Łachwa A. (2001), Rozmyty świat zbiorów, liczb, relacji, faktów, reguł i decyzji, Wydawnictwo EXIT, Warszawa.
4. Zangwill W.I. (1974), Programowanie nieliniowe, WNT, Warszawa.

Additional

1. Simmonard L. (1969), Programowanie liniowe, PWN, Warszawa.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	56	4,0
Classes requiring direct contact with the teacher	26	2,0
Student's own work (literature studies, preparation for tutorials, preparation for tests, preparation for presentations)		

[^0]
[^0]: ${ }^{1}$ delete or add other activities as appropriate

